

No. 142 October 2023

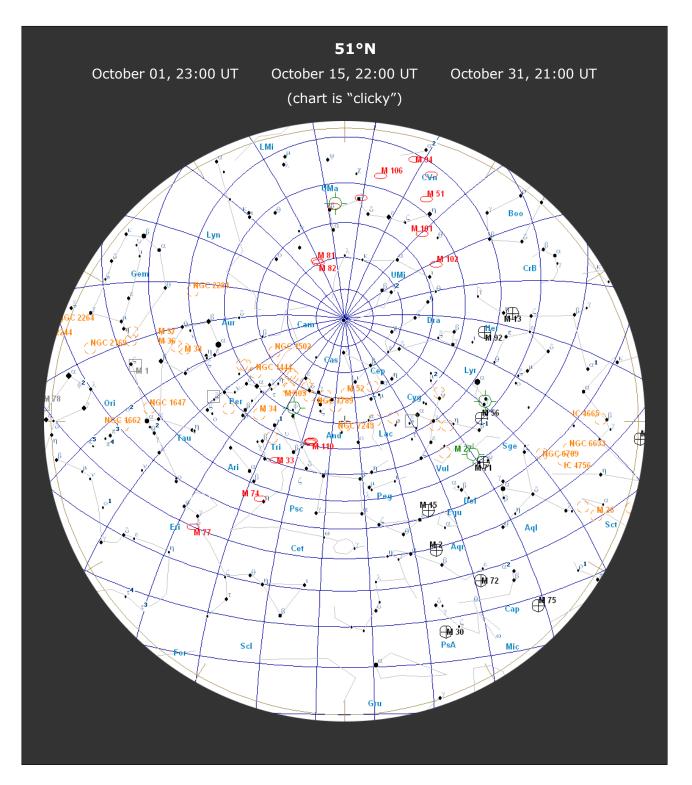
Newsletter

Introduction

Welcome to October's **Binocular Sky** Newsletter.

At last the "observing season proper" has arrived in northern temperate latitudes; the sky is darkening reasonably early and we are starting to see more public stargazing evenings.

Autumn is "Milky Way season", and binoculars really come into their own here. If you have access to the little Galilean-type widefield binoculars, such as the Omegon 2.1x42 or Helios 2x40, give them a try. I find them to be truly delightful on the Milky Way, adding about another magnitude of depth to what you can see.


In the Solar System, the increasing darkness means that we have more opportunity for lunar occultations. If you fancy a challenge, there is a daylight occultation of Antares on the 18th. The binocular planets (ice-giants **Uranus** and **Neptune**) are now both nicely placed for observation.

If you would like to receive the newsletter automatically each month, please complete and submit the <u>subscription form</u>. You can get "between the newsletters" alerts, etc. via and .

The Deep Sky

(<u>Hyperlinks</u> will take you to finder charts and more information on the objects.)

As the sky darkens at twilight, the Milky Way, always a pleasure to scan with binoculars of any size, arches overhead. In the north are NGC 457 (the

Page 2

Owl Cluster) and NGC 663 in Cassiopeia and the Perseus Double Cluster, from which you can easily find Stock 2 (the Muscleman Cluster). Kemble's Cascade and its "splash pool", NGC 1502 are also conveniently placed. To the East of them lie M34 in Perseus and the often-overlooked NGC 752 in Andromeda. More open Clusters are visible in the southern sky in the region of Ophiuchus. These include Melotte 186, NGC 6633 and

Open (also called 'Galactic') Clusters are loosely packed groups of stars that are gravitationally bound together; they may contain from a few dozen to a few thousand stars which recently formed in the galactic disk.

M11, The Wild Duck Cluster, all of which are easily visible in 50mm binoculars. Rising in the north-east are the <u>Auriga clusters</u>, <u>M36</u>, <u>M37</u> and <u>M38</u> and, later, <u>M35</u> in Gemini. While you are looking at M35, also see if you can identify two smaller open clusters, NGC 2158, which is half a degree to the SE, and the slightly more difficult IC 2157, which is a degree to the ESE. To the south of them, the <u>Pleiades</u> and <u>Hyades</u> make a welcome return to evening skies. Also look out for the nearby <u>NGC1647</u>.

In October, the Milky Way is overhead in the mid-to-late evening. This means that those objects (globular clusters and galaxies) that are outside our galaxy are not as well placed for observation as they are when the Milky Way is low in the sky. The bright M81 (Bode's Nebula) and M82 (The Cigar Galaxy), are still relatively easy to observe, even in a 50mm binocular, and their altitude is such that you are unlikely to get neck-strain when you do so with straight-through binoculars. M81 and M82 can be used as a good demonstration of averted vision, especially in larger binoculars: if you have them both in the same field of view, you may see that the core of M81 becomes more apparent if you look at M82. M51

(The Whirlpool) and M101 are becoming much more difficult owing to their lower altitudes; if you wish to see them this month, you should look as soon as the sky is dark.

Notable exceptions to the generalisation of galaxies being poorly placed on October evenings are some of those south of the galactic plane,

Galaxies are gravitationally bound "island universes" of hundreds of billions of stars at enormous distances. The light that we see from M31, for example, left that galaxy around the time our technology consisted of rocks, sticks and bones.

Binocular Sky Newsletter – October 2023

notably The Great Andromeda Galaxy, M31 and M33 (The Triangulum Galaxy). M31 in particular is very easily visible this month and is a naked eye object in moderately dark skies. It is large and bright enough to be able to withstand quite a lot of light pollution (making it available to urban observers). M33 has a low surface-brightness and benefits from lower magnification. This generally makes it easier to see in, say, a 10x50 binocular than in many "starter" telescopes. It is in October evenings that the Sculptor Galaxy, NGC 253, becomes observable before midnight, but you will need a good southern horizon for this.

Although the two Hercules globulars, M92 and the very impressive, and very easy to find, M13 are still observable, their altitude becomes less favourable as the month progresses. M15 and M2 are both better placed. This is also the best time of year to observe NGC 288 in the evening; as with NGC 253, a good southern horizon is essential.

Globular clusters are tightly-bound, and hence approximately spherical, clusters of tens, or even hundreds, of thousands of stars that orbit in a halo around almost all large galaxies that have been observed.

The easiest planetary nebula, M27 (the Dumbbell Nebula – also known as the Apple Core and the Diabolo) – is visible in the evening skies in even 30mm binoculars. The Helix Nebula, NGC 7293 is now about as well-placed as it gets for observation from Britain

Planetary Nebulae are short-lived (a few tens of thousands of years) masses of gas and plasma that result from the death of some stars. They have nothing to do with planets, but get their name from the fact that, in early telescopes, they had the appearance of giant ghostly planets.

before midnight; you'll need a decent southern horizon.

For interactive maps of Deep Sky Objects visible from 51°N, you can visit: https://binocularsky.com/map_select.php

Binocular Sky Newsletter – October 2023

October Deep Sky Objects by Right Ascension					
				RA	Dec
Object	Con	Туре	Mag	(hhmmss)	•
M31 (the Great Andromeda Galaxy)	And	gal	4.3	004244	411608
NGC 457 (the ET Cluster, the Owl Cluster)	Cas	ОС	6.4	011932	581727
M33 (NGC 598, the Pinwheel Galaxy)	Tri	gal	6.2	013351	303929
NGC 663	Cas	ОС	7.1	014601	611406
NGC 752	And	ОС	5.7	015742	374700
Stock 2 (the Muscleman Cluster)	Cas	ОС	4.4	021434	591358
NGC 884 and NGC 869 (the Perseus Double Cluste	Per	ос	5.3	022107	570802
M34 (NGC 1039)	Per	ос	5.2	024204	424542
M45 (the Pleiades)	Tau	ос	1.6	034729	240619
Kemble's Cascade	Cam	ast	9.0	035752	630711
Melotte 25 (the Hyades)	Tau	ос	0.5	042650	154841
M38 (NGC 1912)	Aur	ос	6.4	052842	355117
M36 (NGC 1960)	Aur	ос	6.0	053617	340826
M37 (NGC 2099)	Aur	ос	5.6	055218	323310
M81 (NGC 3031)	UMa	gal	7.8	095533	690401
M82 (NGC 3034)	UMa	gal	9.2	095554	694059
M51 (NGC 5194, the Whirlpool Galaxy)	CVn	gal	8.9	132952	471144
M101 (NGC 5457)	UMa	gal	7.7	140312	542057
M13 (NGC 6205, the Great Hercules Globular Clust	Her	gc	5.8	164141	362738
M92 (NGC 6341)	Her	gc	6.4	171707	430812
Melotte 186	Oph	ос	3.0	180030	025356
NGC 6633	Oph	ос	4.6	182715	063030
M11 (NGC 6705, Wild Duck Cluster)	Sct	ос	5.8	185106	-061600
M27 (NGC 6853, the Dumbbell Nebula, the Apple	Vul	pn	7.6	195936	224318
M2 (NGC 7089)	Aqr	gc	6.5	213327	-004922
NGC 7293 (the Helix Nebula)	Aqr	pn	6.5	222938	-205013

Variable Stars

Selection of Binocular Variables (mag < +7.5)				
Star	Mag Range	Period	Туре	
XY Lyr	5.8-6.4	Irreg	Irregular	
U Sge	6.5-9.3	3.38d	Eclipsing binary	
U Vul	6.7-7.5	7.99d	Cepheid	
SU Cyg	6.4-7.2	3.84d	Cepheid	
U Del	7.0-8.0	ca. 110d	Irregular	
TW Peg	7.0-9.2	ca. 90d	Semi-regular	
U Cep	6.8-9.2	2.5d (increasing)	Eclipsing binary	
Т Сер	6.0-10.3	388d	Mira	
SS Cep	6.7-7.8	ca. 190d	Semi-regular	
RZ Cas	6.2-7.7	1.195d	Eclipsing binary	
R Sct	4.5-9.0	146d	RV Tau	

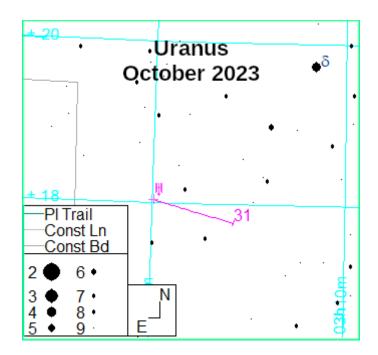
Double Stars

Binocular Double Stars for October				
		Spectral	Separation	
Star	Magnitudes	Types	(arcsec)	
ζ Lyr	4.3, 5.6	A3, A3	44	
β Lyr	3.6, 6.7	B8, B3	46	
OΣ525 Lyr	6.0, 7.6	G0, A0	45	
d Cep	4.1, 6.1	F5, A0	41	
γ Her	3.7, 9.4	F0, K	43	
Σ2277 Her	6,2, 8.9	A0, K	27	
8 Lac	5.7, 6.3	B3, B5	22	
56 And	5.7, 5.9	K0, K2	128	
ΣI 1 And	7.1, 7.3	G5, G5	47	
ψ-1 Psc	5.3, 5.8	A2, A0	30	
14 Ari	5.0, 7.9	F0, F2	106	
62 Eri	5.4, 8.9	B9, B8	67	

The Solar System

The Moon

October 06	Last Quarter
October 14	New Moon
October 22	First Quarter
October 28	Full Moon


Lunar Occultations

Data are for my location and may vary by several minutes for other UK locations. The phases are (\mathbf{D})isappearance, (\mathbf{R})eappearance and (\mathbf{Gr})aze; they are dark-limb events unless the Cusp Angle is negative. Have a go at the daylight occultation of Antares on the 18^{th} .

	Lunar Occultation October 2023 50.9°N 1.8°					
Date	Time (UT)	Phase	Star	Spectral Type	Magnitude	Cusp Angle
Oct 5	02:49:33	R	HIP 26291	K0	6.3	42N
Oct 6	03:06:25	D	49 Aur	A0	5.3	-43N
Oct 6	04:05:04	R	49 Aur	A0	5.3	54N
Oct 6	22:53:14	R	HIP 35494	G8	7.0	86N
Oct 18	12:53:44	D	alp Sco	M1	1.1	89N
Oct 18	14:08:21	R	alp Sco	M1	1.1	-76N
Oct 23	18:51:48	D	HIP 107238	A0	6.2	84N
Oct 26	20:19:30	D	10 Cet	G8	6.4	48S
Oct 29	23:04:00	R	HIP 14672	A0	6.9	73S
Oct 29	23:11:22	D	del Ari	K2	4.4	-79N
Oct 30	00:23:03	R	del Ari	K2	4.4	88S
Oct 30	05:23:32	R	HIP 15597	K2	7.0	70S
Oct 30	20:22:02	R	HIP 18748	В9	6.9	83N
Oct 31	00:19:46	R	HIP 19361	K2	7.0	74S
Oct 31	23:26:13	R	HIP 23712	B5	6.6	59S

The Binocular Planets

Uranus (mag +5.7) is still best observed after midnight all month, and **Neptune** (mag +7.8), well before midnight. Use δ **Ari** as a guide to Uranus, and **20 and 24 Psc** to locate Neptune.

Public Outreach & Talks

If you find yourself at any of these, do come and introduce yourself or give me a virtual "wave".

Dates are UT. Z indicates "Zoom"

Oct 6 th	Newbury AS	Two Eyes are Better than One
Oct 12 th	Tisbury Natural History Society	Responsible Lighting for Wildlife and Conservation
Oct 19 th /20 th		How to Run Public Stargazing Sessions (Z)
Oct 20 th	Deverills	Stargazing Evening
Oct 26 th	FGL "Talk Green"	The Right Light at Night

Zoom/Webex/Teams Talks?

I regularly give talks, on *Binocular Astronomy* and numerous other astronomical topics. I'd be happy to do this – including locations anywhere in the world on Zoom, Webex or Teams – if that is of interest.

If you would like a talk for your society/group,

Click here for current talks.

The Binocular Sky Newsletter will always be free to anyone who wants it.

Wishing you Clear Dark Skies,

Steve Tonkin

for

The Binocular Sky

Acknowledgements:

The charts in this newsletter were prepared with Guide v9.0 from http://projectpluto.com or Stellarium under GNU Public License, incorporating Milky Way panorama © Axel Mellinger

Variable star data based on The International Variable Star Index

Occultation data derived with Dave Herald's Occult

Disclosure: Links to *Amazon* or *First Light Optics* may be affiliate links

© 2023 Stephen Tonkin under a <u>Creative Commons BY-NC-SA License</u>

