

Introduction

Welcome to May's **Binocular Sky** Newsletter.

As regular readers will know, my intention is to highlight some of the binocular targets for the coming month. This is primarily intended for visual astronomers, with binoculars or small telescopes, in the UK, but it should have some utility for observers anywhere north of Latitude 30°S and possibly even further south (if you are further south, please let me know!)

In the Solar System, we have lost the ice giants, Uranus and Neptune, into the solar glare, but **Mercury** is within the range of small binoculars early in the month.

Comet C/2017 K2 (PanSTARRS) is now within range of medium binoculars.

In the deep sky, the "realm of galaxies" is now very convenient for evening observation and the more southerly zodiacal constellations are becoming visible in the pre-dawn.

If you would like to receive the newsletter automatically each month, please complete and submit the <u>subscription form</u>. You can get "between the newsletters" alerts, etc. via and .

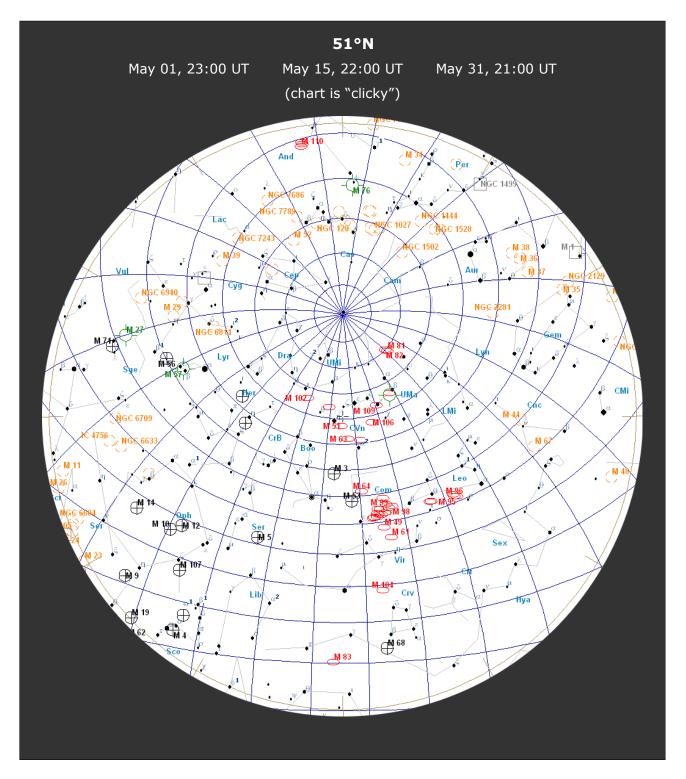
The Deep Sky

(Hyperlinks will take you to finder charts and more information on the objects.)

The trio of open clusters in Auriga and M35 in Gemini are still visible low in the West as twilight darkens. While you are looking at M35, also see if you can identify two smaller open clusters, NGC 2158, which is half a degree to the SE, and the somewhat more difficult IC 2157, which is a degree to the ESE. Also in the West, but slightly higher are M44 (Praesepe) and M67, two fine open clusters in Cancer.

Open (also called 'Galactic') Clusters are loosely packed groups of stars that are gravitationally bound together; they may contain from a few dozen to a few thousand stars which recently formed in the galactic disk.

M67 is interesting from an astrophysics perspective, as it contains numerous Sun-like stars, so their study aids our understanding of our own star.


NGC 457 (The Owl Cluster) and NGC 663 in Cassiopeia and the Perseus Double Cluster are also visible in the north. The finest and best-placed open cluster available this month is Melotte 111, the cluster that gives Coma Berenices its name.

Towards midnight, or later, the open clusters in the summer Milky Way such as IC 4665 (the Summer Beehive), Melotte 186 (Poniatowski's Bull), and M11 (the Wild Duck cluster) are better placed.

In May, we are able to look out of the plane of the Galaxy during the evening. This makes more globular clusters and galaxies available for observation. Look out for the two galaxy trios in Leo (M95/96/105 and M65/66/NGC3628) which are now moving into the western sky, and Markarian's Chain in Coma Berenices, which is very well placed as we enter astronomical twilight. If you have a big binocular, also observe the edge-on NGC4565 (Berenice's Hair Clip),

Galaxies are gravitationally bound "island universes" of hundreds of billions of stars at enormous distances. The light that we see from M31, for example, left that galaxy around the time our technology consisted of rocks, sticks and bones.

which is next to Melotte 111. Also very well placed this month are M81 (Bode's Nebula) and M82 (The Cigar Galaxy), both of which are easy in a

50mm binocular. These can be used as a good demonstration of averted vision: if you have them both I the same field of view, you may see that the core of M81 becomes more apparent if you look at M82. If you have good skies, try M51 (The Whirlpool) and M101 which, although it is a large object, is very difficult owing to its low surface brightness and, therefore, lower

Binocular Sky Newsletter – May 2022

contrast against the background sky.

You'll see from the chart that the globular clusters are becoming better placed in the evening. Of these, M3 is a good one to start with during a May evening's observing. Later in the evening, the two Hercules globulars, M92 and the very impressive and very easy to find M13 are at a better altitude for observation. Although M13 is clearly larger than M92, it is easier to resolve the outer stars of the latter one. M5 and M53

Globular clusters are tightly-bound, and hence approximately spherical, clusters of tens, or even hundreds, of thousands of stars that orbit in a halo around almost all large galaxies that have been observed.

are also well placed in May evenings and, later in the night the Ophiuchus globulars become easier. You can use the same averted vision "trick" suggested for M81 & M82 with M10 and M12 to enhance the distinctly brighter core of M10.

If you have binoculars of at least 100mm aperture, see if you can find and identify NGC 4361, a planetary nebula in Corvus. It is a difficult object because it is low in the sky, even from southern Britain. Another planetary nebula that is a challenge is NGC 6572 in Ophiuchus. It

Planetary Nebulae are short-lived (a few tens of thousands of years) masses of gas and plasma that result from the death of some stars. They have nothing to do with planets, but get their name from the fact that, in early telescopes, they had the appearance of giant ghostly planets.

looks stellar, even at 40x, but you can identify it by its colour; I see it as green, but apparently younger people can see it as blue.

For interactive maps of Deep Sky Objects visible from 51°N, you can visit: https://binocularsky.com/map_select.php

May Deep Sky Objects by Right Ascension					
Object	Con	Туре	Mag	RA (hhmmss)	Dec (ddmmss)
NGC 457 (the ET Cluster,		7.			
The Owl Cluster)	Cas	ос	6.4	011932	581727
NGC 663	Cas	ос	7.1	014601	611406
NGC 884 and NGC 869					
(the Perseus Double Cluster)	Per	ос	5.3	022107	570802
M38 (NGC 1912)	Aur	ос	6.4	052842	355117
M36 (NGC 1960)	Aur	ос	6.0	053617	340826
M37 (NGC 2099)	Aur	ос	5.6	055218	323310
M35 (NGC 2168)	Gem	ос	5.1	060900	242100
M44 (NGC 2632,					
Praesepe, the Beehive Cluster)	Cnc	ос	3.1	083957	194020
M67 (NGC 2682)	Cnc	ос	6.9	085124	114900
M81 (NGC 3031)	UMa	gal	7.8	095533	690401
M82 (NGC 3034)	UMa	gal	9.2	095554	694059
M95 (NGC 3351)	Leo	gal	10.6	104357	114211
M96 (NGC 3368)	Leo	gal	10.1	104645	114912
M105 (NGC 3379)	Leo	gal	10.5	104749	123449
M65 (NGC 3623)	Leo	gal	10.1	111855	130526
M66 (NGC 3627)	Leo	gal	9.7	112015	125924
Melotte 111	Com	ос	1.8	122430	260122
NGC 4361	Crv	pn	10.3	122430	-184705
Markarian's Chain	Vir	gal	9.9	122611	125647
NGC 4565 (Berenice's Hair Clip)	Com	gal	9.9	123620	255914
M53 (NGC 5024)	Com	gc	7.6	131255	181010
M63 (NGC 5055, the Sunflower Galaxy)	CVn	gal	8.6	131549	420159
M51 (NGC 5194, the Whirlpool Galaxy)	CVn	gal	8.9	132952	471144
M3 (NGC 5272)	CVn	gc	6.2	134211	282233
M101 (NGC 5457)	UMa	gal	7.7	140312	542057
M5 (NGC 5904)	Ser	gc	5.7	151833	020459
M13 (NGC 6205,					
The Great Hercules Globular Cluster)	Her	gc	5.8	164141	362738
M12 (NGC6218)	Oph	gc	6.6	164714	-015649
M10 (NGC 6245)	Oph	gc	6.6	165708	-040556
M92 (NGC 6341)	Her	gc	6.4	171707	430812
IC 4665 (The Summer Beehive)	Oph	ОС	4.2	174618	054300
Melotte 186 (Poniatowski's Bull)	Oph	ос	3.0	180030	025356
NGC 6572	Oph	pn	9.0	181206	065113
M11 (NGC 6705, Wild Duck Cluster)	Sct	ос	5.8	185106	-061600

Variable Stars

Mira-type stars near predicted maximum (mag < +7.5)				
Star	Period (days)			
U Ori	4.8-13	377		
R AqI	5.5-12	270.5		
R Ser	5.2-14.4	356.4		

Selection of binocular variables (mag < +7.5)					
Star	Mag Range	Period	Туре		
AA Cam	7.5-8.8	Irreg	Irregular		
Y Lyn	7.2-7.8	110d	Semi-regular		
U Cep	6.8-9.2	2.5d (increasing)	Eclipsing binary		
V1010 Oph	6.1-7	0.66d	Eclipsing binary		
RR Lyr	7.06-8.12	0.57d	RR Lyr		
TX UMa	7.0-8.8	3.06d	Eclipsing binary		

Double Stars

Binocular Double Stars for May					
		Spectral	Separation		
Star	Magnitudes	Types	(arcsec)		
67 Oph	4.0, 8.1	B5, A	54		
ρ Oph	5.0, 7.3, 7.5	B5, A, B3	151, 157		
53 Oph	5.7, 7.4	A2, F	41		
δ Сер	4.1, 6.1	F5, A0	41		
γ Her	3.7, 9.4	F0, K	43		
v Boo	5.0, 5.0	K5, A2	628		
DN & 65 UMa	6.7, 7.0,	A3, B9	63		
π-1 Umi	6.6, 7.2	G5, G5	31		
ν Dra	4.9, 4.9 _{age (}	5 A5, A5	62		

The Solar System

The Moon

May 09	First Quarter
May 16	Full Moon
May 22	Last Quarter
May 30	New Moon

Lunar Occultations

Data are for my location and may vary by several minutes for other UK locations. The phases are (\mathbf{D})isappearance, (\mathbf{R})eappearance and (\mathbf{Gr})aze; they are dark-limb events unless the Cusp Angle is negative.

	Lunar Occultations May 2022 50.9°N 1.8°W						
Date	Time (UT)	Phase	Star	Spectral Type	Magnitude	Position Angle	Cusp Angle
May 04	23:17:28	D	139 Tau	B1	4.8	80	83N
May 08	23:11:11	D	HIP 46155	G7	6.5	150	48S
May 09	18:26:48	D	eta Leo	A0	3.5	99	78N
May 09	19:41:35	R	eta Leo	A0	3.5	320	-61N
May 11	22:24:17	D	HIP 57636	K0	6.6	121	85S
May 13	00:55:19	D	gam Vir	F0	2.8	86	59N
May 13	01:47:22	R	gam Vir	F0	2.8	337	-49N
May 14	21:33:35	D	lam Vir	A1	4.5	157	44S
May 16	03:12:27	D	HIP 75607	A4	7.0	107	50U
May 23	09:03:30	R	tau Aqr	K5	4.1	256	81N


Planets

The binocular planets, **Uranus** and **Neptune**, are not visible this month, but binoculars will help you tease naked-eye **Mercury** out of the evening twilight at the beginning of the month, when it is just 2° E of the Pleiades.

Comets

The perihelion approach of Comet C/2017 K2 (PanSTARRS) has been hotly anticipated for some time. It hasn't brightened as quickly as expected, but is near mag. +10, which is in easy reach of 70mm aperture and upwards, given a decent sky. At the beginning of the month, it is about 45° high (from latitude 51°N) at the end of astro-dark.

Of course, precise comet brightness is highly unpredictable, but it should keep brightening as it passes southward through Ophiuchus over the coming months, so southern observers will get the best of it.

Public Outreach & Talks

If you find yourself at any of these, do give me a virtual "wave". Dates are UT.

May 4 th	Romsey Probus Club	Time and Calendars
May 6 th	South Downs AS	The Right Light at Night
May 10 th	Cody AS	Two Eyes Are better Than One
May 18 th	Worthing AS	Ten Ways the Universe Tries to Kill You
May 21 st	Shropshire AS	Two Eyes Are Better Than One

Zoom/Webex Talks?

I regularly give talks, on *Binocular Astronomy* and numerous other astronomical topics. I'd be happy to do this – potentially anywhere in the world – on Zoom or Webex if that is of interest.

If you would like a talk for your society/group, Click here for current talks.

For schools/scouts/guides, etc., I am a STEM Ambassador so there will be no fee.

The **Binocular Sky Newsletter** will always be free to anyone who wants it, but if you would like to support it, there are a number of options:

- Purchase one of my books, Binocular Astronomy or Discover the Night
 Sky through Binoculars.
- Make a small <u>PayPal</u> donation to newsletter@binocularsky.com

Wishing you Clear Dark Skies,

Steve Tonkin

for

The Binocular Sky

Acknowledgements:

The charts in this newsletter were prepared with Guide v9.0 from http://projectpluto.com or Stellarium under GNU Public License, incorporating Milky Way panorama GAXel Mellinger

Variable star data based on The International Variable Star Index

Occultation data derived with Dave Herald's Occult

Disclosure: Links to Amazon or First Light Optics may be affiliate links

© 2022 Stephen Tonkin under a Creative Commons BY-NC-SA License

