

Introduction

Welcome, all, to November's **Binocular Sky Newsletter.** There's a great deal going on in the sky this month for those of us with binoculars (and small telescopes!) and the longer nights mean that we can do more at socially acceptable times.

In the deep sky, most of which doesn't change much from year to year, we have several Mira-type stars <u>near maximum</u> brightness this month, but two of theses will be relatively tricky observations, one at the beginning of the month, and the very tricky one at the end.

The binocular planets, ice giants **Uranus** and **Neptune**, are now <u>very</u> easily <u>visible</u> in the evening sky.

Amongst the <u>lunar occultations</u>, we have two grazes in one night, and there is one location where you could see both of them.

Mid-month we have the <u>Leonid meteors</u>; the ZHR is only about 15 (so expect to see at most about eight or ten an hour), but they are renowned for having bright, persistent trains, and binoculars are ideal for watching these.

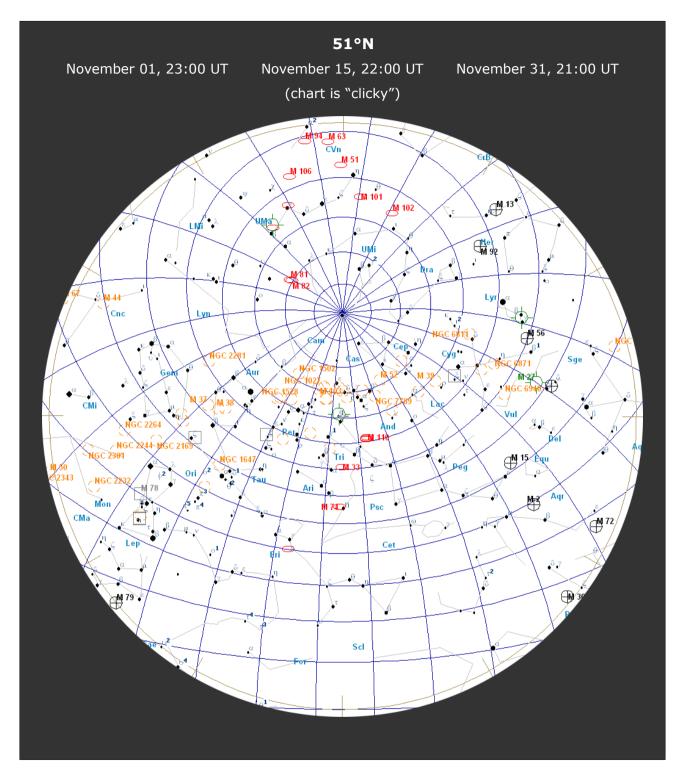
If you would like to receive the newsletter automatically each month, please complete and submit the <u>subscription form</u>. You can get "between the newsletters" alerts, etc. via and .

The Deep Sky

(Hyperlinks will take you to finder charts and more information on the objects.)

As the sky darkens at twilight, the Milky Way, always a pleasure to scan with binoculars of any size, arches overhead. In the north are NGC 457 (the Owl Cluster) and NGC 663 in Cassiopeia and the Perseus Double Cluster, from which you can easily find Stock 2 (the Muscleman Cluster). Kemble's Cascade and its "splash pool", NGC 1502 are also conveniently placed. To the East of them lie M34 in Perseus and the often-overlooked NGC 752 in

Andromeda. More open Clusters are visible in the southern sky in the region of Ophiuchus. These include Melotte 186, NGC 6633 and M11, The Wild Duck Cluster, all of which are easily visible in 50mm binoculars. Rising in the north-east are the Auriga clusters, M36, M37 and M38 and, later, M35 in Gemini. While you are looking at M35, also see if you can identify two smaller open clusters, NGC 2158,


Open (also called 'Galactic') Clusters are loosely packed groups of stars that are gravitationally bound together; they may contain from a few dozen to a few thousand stars which recently formed in the galactic disk.

which is half a degree to the SE, and the slightly more difficult IC 2157, which is a degree to the ESE. To the south of them, the <u>Pleiades</u> and <u>Hyades</u> make a welcome return to evening skies. Also look out for the nearby NGC1647.

In November, the Milky Way is overhead in the mid-to-late evening. This means that those objects (globular clusters and galaxies) that are outside our galaxy are not as well placed for observation as they are when the Milky

Way is low in the sky. The bright M81 (Bode's Nebula) and M82 (The Cigar Galaxy), are still relatively easy to observe, even in a 50mm binocular, and their altitude is such that you are unlikely to get neckstrain when you do so with straight-through binoculars. M81 and M82 can be used as a good demonstration of averted vision, especially in larger binoculars: if you have them both in the same field of view, you will see that the core of M81 becomes more

Galaxies are gravitationally bound "island universes" of hundreds of billions of stars at enormous distances. The light that we see from M31, for example, left that galaxy around the time our technology consisted of rocks, sticks and bones.

apparent if you look at M82. <u>M51 (The Whirlpool)</u> and <u>M101</u> are becoming much more difficult owing to their lower altitudes; if you wish to see them this month, you should look as soon as the sky is dark.

Notable exceptions to the generalisation of galaxies being poorly placed

on November evenings are some of those south of the galactic plane, notably The Great Andromeda Galaxy, M31 and M33 (The Triangulum Galaxy). M31 in particular is very easily visible this month and is a naked eye object in moderately dark skies. It is large and bright enough to be able to withstand quite a lot of light pollution (making it available to urban observers). M33 has a low surface-brightness and benefits from lower magnification. This generally makes it easier to see in, say, a 10x50 binocular than in many "starter" telescopes. It is in November evenings that the Sculptor Galaxy, NGC 253, becomes observable before midnight, but you will need a good southern horizon for this.

Although the two Hercules globulars, M92 and the very impressive, and very easy to find, M13 are still observable, their altitude becomes less favourable as the month progresses. M15 and M2 are both better placed. This is also the best time of year to observe NGC 288 in the evening; as with NGC 253, a good southern horizon is essential.

Globular clusters are tightly-bound, and hence approximately spherical, clusters of tens, or even hundreds, of thousands of stars that orbit in a halo around almost all large galaxies that have been observed.

The easiest planetary nebula, M27
(the Dumbbell Nebula – also known as
the Apple Core and the Diabolo) – is
visible in the evening skies in even
30mm binoculars. The Helix Nebula, NGC
7293 is now about as well-placed as it

Planetary Nebulae are short-lived (a few tens of thousands of years) masses of gas and plasma that result from the death of some stars. They have nothing to do with planets, but get their name from the fact that, in early telescopes, they had the appearance of giant ghostly planets.

gets for observation from Britain before midnight; you'll need a decent southern horizon.

For interactive maps of Deep Sky Objects visible from 51°N, you can visit: https://binocularsky.com/map_select.php

November Deep Sky Objects by Right Ascension						
•				RA	Dec	
Object	Con	Туре	Mag	(hhmmss)	(ddmmss)	
M31 (the Great Andromeda Galaxy)	And	gal	4.3	004244	411608	
NGC 253	Scl	gal	8.0	004733	-251717	
NGC 288	Scl	gc	8.1	005246	-263512	
NGC 457 (the ET Cluster, the Owl Cluster)	Cas	ОС	6.4	011932	581727	
M33 (NGC 598, the Pinwheel Galaxy)	Tri	gal	6.2	013351	303929	
NGC 663	Cas	ос	7.1	014601	611406	
NGC 752	And	ос	5.7	015742	374700	
NGC 884 and NGC 869 (the Perseus Double						
Cluster)	Per	ос	5.3	022107	570802	
Melotte 25 (the Hyades)	Tau	ОС	0.5	042650	154841	
NGC 1647	Tau	ОС	6.4	044555	190542	
M38 (NGC 1912)	Aur	ОС	6.4	052842	355117	
M36 (NGC 1960)	Aur	ОС	6.0	053617	340826	
M37 (NGC 2099)	Aur	ОС	5.6	055218	323310	
M35 (NGC 2168)	Gem	ОС	5.1	060900	242100	
M81 (NGC 3031)	UMa	gal	7.8	095533	690401	
M82 (NGC 3034)	UMa	gal	9.2	095554	694059	
M51 (NGC 5194, the Whirlpool Galaxy)	CVn	gal	8.9	132952	471144	
M101 (NGC 5457)	UMa	gal	7.7	140312	542057	
M13 (NGC 6205, the Great Hercules Globular						
Cluster)	Her	gc	5.8	164141	362738	
M92 (NGC 6341)	Her	gc	6.4	171707	430812	
M11 (NGC 6705, Wild Duck Cluster)	Sct	ОС	5.8	185106	-061600	
M27 (NGC 6853, the Dumbbell Nebula,						
the Apple Core, the Diabolo)	Vul	pn	7.6	195936	224318	
M15 (NGC 7078)	Peg	gc	6.2	212958	121003	
M2 (NGC 7089)	Aqr	gc	6.5	213327	-004922	
NGC 7293 (the Helix Nebula)	Aqr	pn	6.5	222938	-205013	

Variable Stars

Mira-type stars near predicted maximum (mag < +7.5)					
Star Mag Range Period (day					
UV Aur	7.3 – 11.1	393.7			
R Cyg	6.1 - 14.4	426.45			
R Hya	3.5 - 10.9	380			
X Oph	5.9 - 8.6	338			

(R Hya will be visible as a difficult morning object towards the end of the month; X Oph will be best observed early in the month in the evenings.)

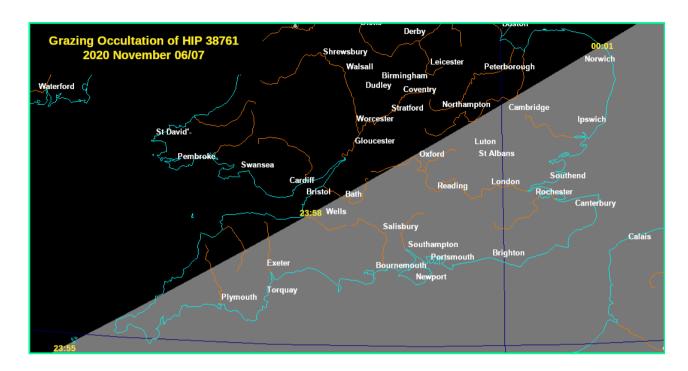
Selection of binocular variables (mag < +7.5)					
Star	Mag Range	Period	Туре		
XY Lyr	5.8-6.4	Irreg	Irregular		
U Sge	6.5-9.3	3.38d	Eclipsing binary		
U Vul	6.7-7.5	7.99d	Cepheid		
SU Cyg	6.4-7.2	3.84d	Cepheid		
U Del	7.0-8.0	ca. 110d	Irregular		
TW Peg	7.0-9.2	ca. 90d	Semi-regular		
U Cep	6.8-9.2	2.5d (increasing)	Eclipsing binary		
SS Cep	6.7-7.8	ca. 190d	Semi-regular		
RZ Cas	6.2-7.7	1.195d	Eclipsing binary		
R Sct	4.5-9.0	146d	RV Tau		

Double Stars

Binocular Double Stars for November					
		Spectral	Separation		
Star	Magnitudes	Types	(arcsec)		
ζ Lyr	4.3, 5.6	A3, A3	44		
β Lyr	3.6, 6.7	B8, B3	46		
OΣ525 Lyr	6.0, 7.6	G0, A0	45		
d Cep	4.1, 6.1	F5, A0	41		
γ Her	3.7, 9.4	F0, K	43		
Σ2277 Her	6,2, 8.9	A0, K	27		
8 Lac	5.7, 6.3	B3, B5	22		
56 And	5.7, 5.9	K0, K2	128		
ΣI 1 And	7.1, 7.3	G5, G5	47		
ψ-1 Psc	5.3, 5.8	A2, A0	30		
14 Ari	5.0, 7.9	F0, F2	106		
62 Eri	5.4, 8.9	B9, B8	67		
т Tau	4.3, 7.0	B5, A0	63		
v Gem	4.1, 8.0	B5, A0	113		
ζ Gem	4.0, 7.6	G0, G	101		
п-1 Umi	6.6, 7.2	G5, G5	31		

The Solar System

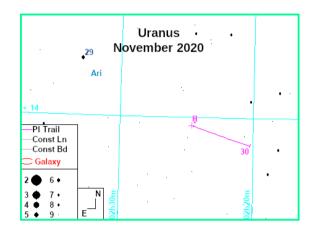
(Charts are "clicky" for higher resolution alternatives)

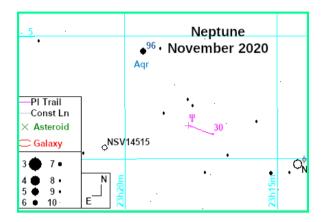

The Moon

November 08 Last Quarter
November 16 New Moon
November 22 First Quarter
November 30 Full Moon

Lunar Occultations

Data are for my location and may vary by several minutes for other UK locations. The phases are (\mathbf{D})isappearance, (\mathbf{R})eappearance and (\mathbf{Gr})aze; they are dark-limb events unless there is a (\mathbf{B}). The highlights are the two grazing occultations on the night of the 6th/7th. The two predicted graze tracks intersect in the Frogwell area of Chippenham, Wiltshire.


		_					
Nov 06	01:30:34	R	Ome Gem	G5	5.2	116	56S
Nov 06	04:16:34	R	HIP 53766	M1	6.7	182	39S
Nov 06	23:58:49	Gr	HIP 38761	B8	6.8		9.7N
Nov 07	00:05:21	R	HIP 38761	B8	6.8	87	24N
Nov 07	02:15:04	R	HIP 39077	K0	6.9	115	42S
Nov 07	02:26:19	Gr	HIP 39194	K1	6.4		6.4N
Nov 07	02:35:29	R	HIP 39194	K1	6.4	120	22N
Nov 10	03:12:31	R	HIP 52683	A2	6.9	101	68S
Nov 11	05:27:37	D(B)	Nu Vir	M0	4.0	123	-61S
Nov 22	20:49:32	D	69 Aqr	B9	5.7	212	59S
Nov 22	22:11:34	D	Tau Aqr	K5	4.1	230	79N
Nov 25	23:18:37	D	HIP 4979	F1	6.1	225	31N
Nov 27	19:25:55	D	HIP 11427	F5	6.5	126	76N

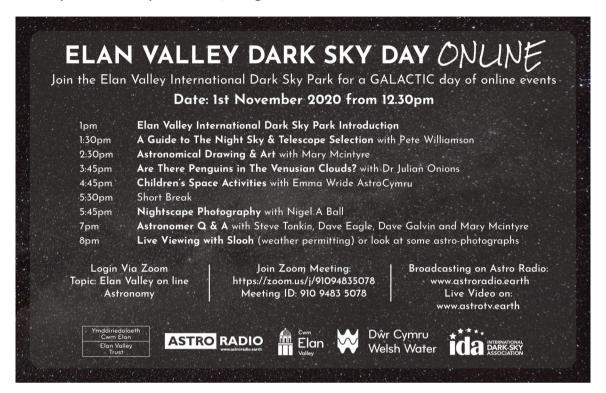


Planets

Uranus (mag +5.7) is becoming an evening object (it was at <u>opposition</u> on Oct 31st), and **Neptune** (mag +7.9) is best early in the evening. Both ice giants still transit during astronomical dark all month.

(NB: These charts are not to the same scale!)

Meteor Shower


The Leonid meteors are active from the 6th to the 30th, and peak on the 17th; it should be worth watching on the nights of the 16th/17th and 17th/18th, after about 22:45 when the radiant has risen. There will be very little Moonlight to interfere. The Leonids result from the dust left by Comet Temple-Tuttle. We don't use binoculars to watch for the meteors themselves, but the Leonids tend to leave bright, persistent trains, and it is these that we can watch with binoculars, as they reveal the wind patterns in the upper atmosphere.

Binocular Astronomy on Facebook

Last month, a <u>Binocular Astronomy Facebook Group</u> was started by the American amateur astronomer <u>Dave Mitsky</u>. It's growing apace and has become a valuable sharing resource for our little niche of this wonderful hobby. If you're on Facebook and interested, do come along and join us!

Public Outreach & Talks

If you're at any of these, do give me a virtual "wave":

Nov 1st Elan Valley Dark Sky Day **Astronomy Q&A** (Zoom and AstroTV)

Nov 12th Bearsted and District U3A Pseudoastronomy: Planet X, Zetans, and

Lost Civilisations (talk)

Nov 12th Northumberland AS Two Eyes Are Better Than One (talk &

demo)

Zoom Talks during the SARS-CoV-2 emergency?

I regularly give talks, on Binocular Astronomy and numerous other astronomical topics. During the current "lockdown" in the UK, I'd be happy to do this on Zoom if that is of interest.

If you would like a talk for your society/group, Click here for current talks.

The **Binocular Sky Newsletter** will always be free to anyone who wants it, but if you would like to support it, there are a number of options:

- Purchase one of my books, <u>Binocular Astronomy</u> or <u>Discover the Night</u>
 Sky through Binoculars.
- Make a small <u>PayPal</u> donation to newsletter@binocularsky.com

Wishing you Clear Dark Skies,

Steve Tonkin

for

The Binocular Sky

Acknowledgements:

The charts in this newsletter were prepared with Guide v9.0 from http://projectpluto.com or Stellarium under GNU Public License, incorporating Milky Way panorama ©Axel Mellinger

Variable star data based on The International Variable Star Index

Occultation data derived with Dave Herald's Occult

Disclosure: Links to Amazon or First Light Optics may be affiliate links

© 2020 Stephen Tonkin under a Creative Commons BY-NC-SA License

